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Abstract

A combined finite element method/method of moments (FEM/
MoM) approach is used to analyze the electromagnetic scattering
properties of a three-dimensional-cavity-backed aperture in an infinite
ground plane. The FEM is used to formulate the fields inside the cav-
ity, and the MoM (with subdomain bases) in both spectral and spatial
domains is used to formulate the fields above the ground plane. Fields
in the aperture and the cavity are solved using a system of equations
resulting from the combination of the FEM and the MoM. By virtue of
the FEM, this combined approach is applicable to all arbitrarily
shaped cavities with inhomogeneous material fillings, and because of
the subdomain bases used in the MoM, the apertures can be of any
arbitrary shape. This approach leads to a partly sparse and partly
dense symmetric matrix, which is efficiently solved using a biconjugate
gradient algorithm. Numerical results are presented to validate the
analysis.

1. Introduction

The electromagnetic characterization of cavity-backed apertures is important in understanding their
scattering properties and in electromagnetic penetration-coupling studies. Recently, there has been con-
siderable interest in analyzing cavity-backed apertures in an infinite ground plane. Various analytical
and numerical techniques have been applied for two-dimensional-cavity-backed apertures (refs. 1 to 6).
For three-dimensional problems, mode matching has been used for rectangular- (ref. 7) and spherical-
(ref. 8) cavity-backed apertures. Recently, a method of moments (MoM) modal (ref. 9) combined
approach has been used to analyze apertures formed by rectangular cavities recessed in ground planes.
These methods are restricted to cavities with regular shapes, where fields can be written in modal form.
In reference 10, a boundary integral method is used to analyze the scattering from three-dimensional
cavities by means of a connection scheme. Though useful for savings in computer memory, this method
leads to dense matrices. Also, the accumulation of errors caused by the connection algorithm is not neg-
ligible as the number of subsections increases. In the case of deep cavities, high-frequency techniques
such as those proposed in references 11 and 12 could be effectively implemented. Unfortunately these
techniques are not suitable when the cavity is filled with inhomogeneous materials. In reference 13 a
finite difference time domain (FDTD) method is applied for large structures, but the FDTD method
sometimes results in inaccurate results because of differencing, staircasing, and dispersion. Recently,
Jin and Volakis (ref. 14) used a finite-element-boundary integral formulation that uses the boundary
integral equation to formulate the fields external to the cavity accurately.

In this paper, an approach similar to that described in reference 14 is followed. The volume of the
cavity is discretized using tetrahedral elements, which automatically results in discretization of the aper-
ture in triangular elements. The evaluation of the MoM integrals involves integration over triangular
patches. These integrals are efficiently solved using the formulas given in reference 15. As an alterna-
tive approach, these integrals are evaluated using the spectral-domain approach given in reference 16.
Numerical studies indicate that both methods, when combined with the finite element method (FEM)
give almost identical results, but the spectral-domain method becomes prohibitively time consuming for
moderate to large aperture sizes. Comparisons of CPU times for both methods are given. Some exam-
ples are considered with and without material fillings to validate the present analysis. Numerical results
thus obtained are compared with the available data in the literature.
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Symbols

A FEM/MoM matrix

b excitation matrix

ds surface integral

dv volume integral

E electric field

Ei incident electric field

Ez,i z-component ofEi

e unknown coefficient matrix

ei unknown coefficients as defined in equation (18)

F electric vector potential

H magnetic field

H i incident magnetic field

Hr reflected magnetic field

Hscat scattered magnetic field

Hx,i x-component ofH i

Hy,i y-component ofH i

Hz,i z-component ofH i

Hθ,i θ-component ofH i

Hφ,i φ-component ofH i

Hθ,s θ-component ofHscat

Hφ,s φ-component ofHscat

j

ko free-space wave number

kx Fourier transform variable with respect tox

ky Fourier transform variable with respect toy

kz complex propagation constant inz-direction

Li length of edge in tetrahedral element

M magnetic current

x-component of Fourier transform ofM

y-component of Fourier transform ofM

unit normal

r position vector from the origin to the field point

r ′ position vector from the origin to the source point

r, θ, φ spherical coordinates

S surface

Sa aperture surface

T vector testing function for volume elements

Ts vector testing function for surface elements

= 1–
2π
λ

------

M̃x

M̃y

n̂
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x-component of Fourier transform ofT

y-component of Fourier transform ofT

V volume

W i vector basis functions for tetrahedral elements,i = 1, 2,..., 6

W j vector basis functions for tetrahedral elements,j = 1, 2,..., 6

X,Y,Z rectangular coordinate axes

x, y, z unit vector alongX-, Y-, andZ-axis, respectively

x1, y1, z1,
x2, y2, z2,
x3, y3, z3,
x4, y4, z4 coordinates of nodes of a tetrahedral element

α polarization angle

αm,αn simplex coordinates associated with nodesm andn in tetrahedral element

integration over a triangular element

▲ integration over a tetrahedral element

εr relative permittivity

ηo intrinsic impedance of free space

θi, φi incident angles as shown in figure 1

unit vector alongθ-direction

λ free-space wavelength

µo permeability of free space

µr relative permeability

σ scattering cross section

σEE copolarized scattering cross section when E-polarized wave is transmitted

σEH cross-polarized scattering cross section when E-polarized wave is transmitted

σHE cross-polarized scattering cross section when H-polarized wave is transmitted

σHH copolarized scattering cross section when H-polarized wave is transmitted

unit vector alongφ-direction

ω angular frequency

del operator

2. Analysis

Figure 1 shows the geometry of the problem under consideration. The infinite ground plane is
placed atz = 0. Consider that this geometry is illuminated by a harmonic plane wave (ref. 9)

(1)

(2)

T̃x

T̃y

∆

θ̂

φ̂

∇

H i xHx i, yHy i, zHz i,+ +( ) e
jk i– r⋅

θ̂Hθ i, φ̂Hφ i,+( ) e
jk i– r⋅

= =

Ei ηoH i k i×=
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where

(3)

(4)

(5)

(6)

(7)

(8)

in which ko is the free-space wave number,ηo is the free-space intrinsic impedance, andα represents
the polarization angle of the incident field. Whenα = 0, thenHz,i = 0, which corresponds to
H-polarization, and whenα = π/2, thenEz,i = 0, which corresponds toE-polarization.

The electric field in the cavity caused by this incident wave satisfies the vector wave equation:

(9)

whereµr is the relative permeability andεr is the relative permittivity of the medium.

To solve the partial differential in equation (9) with the FEM, multiply equation (9) with a vector
testing functionT and integrate over the volume of the cavity. By applying suitable vector identities, we
can write equation (9) in its weak form (ref. 17) as

(10)

Applying the divergence theorem to the integral on the right-hand side of equation (10) and using
Maxwell’s equation  allows equation (10) to be rewritten as

(11)

where  is the outward unit normal to the surface enclosing the volumeV andH is the total magnetic
field at the surface. Because the tangential electric field is zero on the perfect-electric-conducting (PEC)
walls of the cavity, the surface integral in equation (11) is nonzero only over the aperture opening in the
infinite ground plane. In accordance with the equivalence principle, the cavity and the outside regions
are decoupled by closing the aperture with a perfect conductor and introducing an equivalent magnetic
current. By invoking image theory,H above the infinite ground plane consists of the incident fieldH i,
the reflected fieldHr from the ground plane, and the scattered magnetic fieldHscat from the equivalent
magnetic current. Therefore, the totalH field is

(12)

k i ko– x θi φicos y θi φisin z θicos+sin+sin( )=

Hx i,
α θi φicoscossin α φisincos+

ηo
--------------------------------------------------------------------------------------=

Hy i,
α θi φisincossin α φicoscos–

ηo
--------------------------------------------------------------------------------------=

Hz i,
α θisinsin–

ηo
---------------------------------=

Hθ i, H i αsin=

Hφ i, H i αcos=

∇ 1
µr
-----∇ E× 

  ko
2

–× εrE 0=

1
µr
----- ∇ T×( ) ∇ E×( )dv•

V
∫∫∫ ko

2
– εr T E dv•

V
∫∫∫ ∇

V
∫∫∫ T

1
µr
-----∇ E×× 

  dv•=

∇ E× jωµoµrH–=

1
µr
----- ∇ T×( ) ∇ E×( )dv•

V
∫∫∫ ko

2
– εr T E dv•

V
∫∫∫ jωµo T n̂×( ) H• sd

S
∫∫=

n̂

H H i H r Hscat+ +=
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where, because of the perfectly conducting ground plane,H i = Hr. We can write equation (11) as

(13)

where  indicates the integration over the aperture surface.

At this point, the problem can be divided into two parts, the first being the FEM part involving the
discretization and evaluation of volume integrals on the left-hand side of equation (13) and the second
being the MoM part involving the discretization and evaluation of the surface integrals. We can write
equation (13) as

(14)

where

(15)

(16)

(17)

2.1. FEM Formulation

To discretize the volume integrals in equation (13), the volume of the cavity is subdivided into
small-volume tetrahedral elements. The electric field is expressed in terms of the edge vector basis func-
tions, which enforce the divergenceless condition of the electric field implicitly (ref. 17):

(18)

where  are the unknown coefficients associated with each edge of the tetrahedral element and

(19)

wherem andn are the nodes connected to form edgei,  is the length of the edge, and  and  are
the simplex coordinates associated with nodesm andn. The simplex coordinates for the nodes of a tetra-
hedron element are given by Silvester and Ferrari (ref. 18) as

(20)

(21)

(22)

(23)

1
µr
----- ∇ T×( ) ∇ E×( )dv•

V
∫∫∫ ko

2
– εr T E dv•

V
∫∫∫ jωµo T n̂×( ) Hscat ds•

Sa

∫∫– 2 jωµo T n̂×( ) H i• sd

Sa

∫∫=

Sa

I v I s+ I e=

I v
1
µr
----- ∇ T×( ) ∇ E×( )dv•

V
∫∫∫ ko

2
– εr T E dv•

V
∫∫∫=

I s jωµo T n̂×( ) Hscat ds•

Sa

∫∫–=

I e 2 jωµo T n̂×( ) H i ds•

Sa

∫∫=

E eiW i
i 1=

6

∑=

ei

W i Li αm αn∇ αn αm∇–( )=

Li αm αn

α1

V1

V
------=

α2

V2

V
------=

α3

V3

V
------=

α4

V4

V
------=
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whereV is the volume of the tetrahedron given by

(24)

andV1, V2, V3, andV4 are given by

(25)

(26)

(27)

(28)

The testing functionT is taken to be the same as an element of equation (18) that is,

(29)

Substituting equations (18) and (29) into equation (15) yields

(30)

where  indicates the integration over the volume of a tetrahedral element.

The evaluation of these integrals over a tetrahedral element is given in reference 17. The resulting
element submatrices are assembled over all the elements in the cavity volume to form a symmetric,
sparse matrix of the FEM.

V
1
6
---

1 x1 y1 z1

1 x2 y2 z2

1 x3 y3 z3

1 x4 y4 z4

=

V1
1
6
---

1 x y z

1 x2 y2 z2

1 x3 y3 z3

1 x4 y4 z4

=

V2
1
6
---

1 x1 y1 z1

1 x y z

1 x3 y3 z3

1 x4 y4 z4

=

V3
1
6
---

1 x1 y1 z1

1 x2 y2 z2

1 x y z

1 x4 y4 z4

=

V4
1
6
---

1 x1 y1 z1

1 x2 y2 z2

1 x3 y3 z3

1 x y z

=

T W j= j 1 2 … 6, , ,=( )

I v
1
µr
----- ∇ W i×( ) ∇ W j×( )• ei dv ko

2εr W i W j•( )ei dv j 1 2 … 6, , ,=( )
▲

∫∫∫–
▲
∫∫∫

i 1=

6

∑=

▲
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2.2. MoM Formulation

The discretization of a cavity volume into tetrahedral elements automatically results in the discreti-
zation of the aperture into triangular elements. In accordance with the equivalence principle (ref. 19),
the fields in the two regions can be decoupled by closing the aperture with a perfect electric conductor
and introducing the equivalent magnetic current

(31)

over the extent of the aperture. Hence, from equation (18), the magnetic current can be expressed in
terms of the unknown coefficients associated with the tetrahedral elements as

(32)

Similarly,

(33)

The scattered magnetic field due to the magnetic current given in equation (31) above the infinite
ground plane is given by

(34)

where

(35)

where  is the field point and  is the source point with coordinates  and . In writing equations (34)
and (35), the principle of image theory is used.

2.3. Spectral-Domain Approach

Writing equation (35) in terms of plane waves (ref. 19) and substituting equation (32) into
equation (35) follows a procedure similar to that in reference 16 and allows equation (16) to be written
as

(36)

where

(37)

M E z×= at z 0=( )

M ei W i z×( )
z 0=

i 1=

3

∑=

Ts T z× W j z×= = j 1 2 3, ,=( )

Hscat
1

jωµ0
------------- ∇ ∇ F××( )=

F
1

2π
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


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and  and  are thex- andy-components of the Fourier transforms ofM  andT. The
Fourier transform of a functionF(x,y) is defined as

(38)

Equation (36) is evaluated over each triangular element, and contributions from all the elements
over the aperture are assembled to form a full matrix. This matrix is added to the FEM matrix to form
the left-hand-side coefficient matrix. The numerical implementation of equation (36) is done by obtain-
ing closed-form expressions for the Fourier transforms of the basis function over a triangular element
(ref. 20).

2.4. Spatial-Domain Approach

The scattered magnetic field in equation (34) can be rewritten as (ref. 19)

(39)

Substituting equation (39) into equation (16) gives

(40)

The integrals in the above equation are evaluated over all the triangles on the aperture surface using
the procedure outlined in Rao et al. (ref. 21). When calculating the mutual term over the triangles, a
13-point Gaussian quadrature formula developed for triangles (ref. 22) is used. While evaluating the self
term of these integrals, closed-form expressions given by Wilton et al. (ref. 15) are used. The dense
matrix thus formed is assembled over all the triangles and combined with the FEM matrix using a global
numbering system.

2.5. Excitation Vector

With the testing function defined in equation (33), the excitation integral in equation (16) can be
evaluated by substituting forH i and integrating over each triangular element of the aperture. The
element contributions are assembled over all the elements of the aperture to form the excitation vector.

2.6. Solution Algorithm

By adding the contributions from the FEM and MoM integrals and evaluating the excitation vector,
equation (14) can be written in matrix form as

(41)

whereA is a symmetric matrix that is partly sparse (because of the FEM) and partly dense (because of
the MoM). The column vectore is the unknown coefficient vector to be solved. Matrixb is the excita-
tion vector. Because of the sparsity and symmetry of matrixA, only the nonzero elements of half of the
matrix (upper half or lower half, including the diagonal) are stored to minimize the memory demand. A
biconjugate gradient algorithm (ref. 23) solves equation (40) efficiently.

M̃x M̃y,( ) T̃x T̃y,( )

F̃ kx ky,( ) F x y,( )e
j kxx kyy+( )

dx dy
∆
∫∫=

Hscat
1

jωµo
------------- ko

2
F ∇ F•( )∇+[ ]=

I s ko
2

Ts F• sd
Sa

∫∫– Ts ∇ F•( )∇• sd
Sa

∫∫–=

Ae b=
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2.7. Scattered Cross Section

Once the electric fieldE is found and hence the magnetic currentM  on the aperture, the far zone
scattered field can be computed.

(42)

where  are the usual spherical coordinates of the observation point. The scattering cross section
is then given by

(43)

where

(44)

(45)

The total scattering cross section is defined by equation (43); however, in most measurements either
E-polarized orH-polarized waves are transmitted, and theE-polarized andH-polarized scattered far
fields are measured separately. In such cases, the scattering cross section may be defined as

(46)

(47)

(48)

(49)

3. Numerical Results

Backscatter cross section calculations were performed for various cavities to validate the analysis
presented in this paper. These numerical results were compared with those available in the literature
(refs. 9, 10, and 14).   A commercial software package, COSMOS/M (ref. 24), models and generates the
mesh for the geometries used for numerical computations in this paper. A discretization size of 0.1λ
generally suffices to achieve convergent results. Figure 2 shows the geometry of the rectangular cavity
used in the numerical calculations shown in figures 3 to 6.

To compare the spatial- and spectral-domain methods used to evaluate the MoM integrals, the back-
scatter cross section of an empty cavity with dimensions 0.7λ × 0.1λ × 1.73λ for incident angleθi = 40°

Hscat r( )
r ∞→

jko

ηo
-------- e

jkor–

2πr
-------------- θ̂θ̂ φ̂φ̂+( ) M x′ y′,( )e

jko θ x′ φcos y′ φsin+( )sin
dx′ dy′•

Sa

∫∫–=

r θ φ, ,( )

σ 4πr
2 Hscat r( ) 2

H i r( ) 2
-------------------------

r ∞→
lim=

Hscat r( ) 2
Hθ s,

2
Hφ s,

2
+=

H i r( ) 2
Hθ i,

2
Hφ i,

2
+=

σHH 4πr
2 Hφ s,

2

Hφ i,
2

-----------------
r ∞→
lim=

σHE 4πr
2 Hθ s,

2

Hφ i,
2

-----------------
r ∞→
lim=

σEE 4πr
2 Hθ s,

2

Hθ i,
2

-----------------
r ∞→
lim=

σEH 4πr
2 Hφ s,

2

Hθ i,
2

-----------------
r ∞→
lim=
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was calculated as a function ofφ using both methods. The results are presented in figure 3. Both meth-
ods lead to almost identical results, but the spectral-domain method took more time to fill the MoM
matrix than the spatial-domain method did. In this example, a total of 1234 tetrahedral elements were
used to discretize the cavity, which resulted in 20 triangular patches at the cavity aperture. The spectral-
domain approach required 840 sec of CPU time to fill the matrix even after using the symmetry property
of the MoM matrix, whereas the spatial-domain approach required only 5 sec of CPU time to fill the
MoM matrix after using the symmetry property of the MoM matrix. The above calculations were done
on a CONVEX C220 computer. Because of the large difference in CPU times required to fill the MoM
matrix, the spatial-domain approach was used to carry out the rest of the numerical calculations. The
spectral-domain approach became prohibitively time consuming as the number of triangular elements in
the aperture increased. Backscatter patterns of this cavity forH- andE-polarizations were also com-
pared with those results given in reference 14 and are shown in figure 4.

Backscatter cross section was also calculated for a long and narrow cavity (a = 2.5λ, b = 0.25λ, and
c = 0.25λ) and is given in figure 5. There were 944 tetrahedral elements used to discretize the cavity
volume. This discretization procedure resulted in 154 triangular elements in the aperture. Comparison
with the results given in reference 9 shows very good agreement.

Figure 6 presents the backscatter cross section for a cavity with dimensionsa = 1.0λ, b = 0.25λ, and
c = 0.25λ and filled with material havingεr = 7.0 − j1.5  andµr = 1.8 − j0.1. For this cavity, 2861
tetrahedral elements were used in its discretization. This discretization procedure resulted in 200 trian-
gular elements in the aperture area. In this study, a discretization size of  generally resulted in
convergent results for dielectric-filled cavities. The data computed with the present method agree well
with those reported in reference 14. Backscatter cross-section calculations were performed for a rectan-
gular cavity (fig. 7(a)) partly filled with a lossy dielectric material. The numerical data calculated were
compared with those of reference 10 and are presented in figure 7(b).

The following examples prove the flexibility of the present method. Figure 8(a) shows the geometry
of a circular cavity with a circular aperture. Backscatter cross-section calculations for this cavity were
made with the present method and are presented in figure 8(b). The data obtained with the present
method agree well with those given in reference 10. As a second example, an air-filled rectangular cav-
ity with a circular aperture was considered. The geometry of the problem is shown in figure 9(a). Back-
scatter cross-section calculations forE-polarized andH-polarized incident fields were performed and
are presented in figure 9(b). The numerical results obtained with the present method are compared with
unpublished results obtained with a combined mode matching/MoM method. Because of the discontinu-
ity of the circular aperture a discretization size of 0.035λ was used in this example to achieve conver-
gent results. A third example illustrates the flexibility of the present method for cavities filled with
multidielectric materials. A rectangular cavity with a circular cylinder of dielectric material in its center
and surrounded by a different material was considered. The geometry of the problem is shown in
figure 10(a), and a discretization size of 0.05λ was used. Backscatter cross-section calculations were
performed for bothE- andH-polarizations of incident fields and are presented in figure 10(b).

4. Conclusions

A combined finite element method/method of moments (FEM/MoM) technique can be used to ana-
lyze the electromagnetic scattering properties of a three-dimensional-cavity-backed aperture in an infi-
nite ground plane. Both spectral- and spatial-domain approaches can be used to calculate the MoM
integrals, but the spectral-domain approach is prohibitively time consuming for large apertures. The
spatial-domain approach is much faster and as accurate as the spectral-domain approach. This approach
is capable of calculating backscatter cross sections for cavities with arbitrary shapes and material fill-
ings and with arbitrarily shaped aperture openings. The symmetry and sparsity of the matrix to be
solved are completely exploited for savings in computer memory, and the biconjugate gradient

0.1λ/ εr
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algorithm is used to save computer time. Numerical results obtained with this method show good agree-
ment with the available data in the literature, proving its validity.

NASA Langley Research Center
Hampton, VA 23681-0001
August 2, 1995
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Figure 1.  Geometry of cavity-backed arbitrarily shaped aperture in ground plane.

Figure 2.  Geometry of rectangular-cavity-backed aperture.
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(a) E-polarization.

(b) H-polarization.

Figure 3.  Backscatter cross section of air-filled cavity versus incidence angle fora = 0.7λ, b = 0.1λ,
c = 1.73λ, and θi = 40°.

0 20 40 60 80

–40

–30

–20

–10

0

10

σ/
λ2 , d

B

φ, deg

Spatial-domain method, σEE
Spatial-domain method, σEH
Spectral-domain method, σEE
Spectral-domain method, σEH

10 30 50 70 90

0
–40

–30

–20

–10

0

10

σ/
λ2 , d

B

φ, deg
20 40 60 8010 30 50 70 90

Spatial-domain method, σHH
Spatial-domain method, σHE
Spectral-domain method, σHH
Spectral-domain method, σHE



15

(a) E-polarization.

(b) H-polarization.

Figure 4.  Backscatter cross section of air-filled cavity versus incidence angle fora = 0.7λ, b = 0.1λ,
c = 1.73λ, and θi = 40°.
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(a) φ = 0°.

(b) φ = 90°.

Figure 5.  Backscatter cross section of air-filled cavity witha = 2.5λ, b = 0.25λ, andc = 0.25λ.
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(a) φ = 0°.

(b) φ = 90°.

Figure 6.  Backscatter cross section of material-filled cavity witha = 1.0λ, b = 0.25λ, c = 0.25λ,
εr = 7.0− j1.5, andµr = 1.8− j0.1.

0 20 40 60 80

–40

–30

–20

–10

10

σ/
λ2 , d

B

θ, deg
90

FEM/MoM results, H-pol
FEM/MoM results, E-pol
Reference 14 results, H-pol
Reference 14 results, E-pol

0

–50

–60
70503010

0 20 40 60 80

–40

–30

–20

–10

10

σ/
λ2 , d

B

θ, deg
90

0

–50

–60
70503010



18

(a)  Cavity geometry.

(b)  Azimuthal scan atθ = 40°.

Figure 7.  Backscatter cross section of partly filled rectangular cavity of sizea = 0.3λ, b = 0.1λ, and
c = 0.6λ. The dielectric (εr = 2 − j2) layer is 0.2λ thick.
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(a)  Cavity geometry.

(b)  Backscatter forE- andH-polarization.

Figure 8.  Backscatter cross section of air-filled circular cavity.
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(a)  Cavity geometry.

(b)  Backscatter forE- andH-polarization.

Figure 9.  Backscatter cross section of air-filled rectangular cavity with circular aperturea = 0.5λ,
b = 0.5λ, c = 0.3λ, and radius 0.2λ.
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(a)  Cavity geometry.

(b)  Backscatter forE- andH-polarization.

Figure 10.  Backscatter cross section of inhomogeneously filled cavity witha = 0.5λ, b = 0.5λ, c = 0.3λ,
εr1 = 2.0,εr2 = 1.5, and inner dielectric radius 0.2λ.
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